An integral equation model for Stefan problems with multiple phases

نویسندگان

  • M. Zerroukat
  • L. C. Wrobel
چکیده

A boundary element formulation for the solution of multiple moving boundary problems is presented and tested herein. A heat transfer problem involving heating of solid, melting of solid and vaporisation of liquid is considered. Numerical results show that the boundary element method is more suitable and more accurate than both finite difference and finite element methods for this kind of problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

Newton-Product Integration for a Stefan Problem with Kinetics

Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.

متن کامل

Development of a phase change model for volume-of-fluid method in OpenFOAM

In this present study, volume of fluid method in OpenFOAM open source CFD package will be extended to consider phase change phenomena with modified model due to condensation and boiling processes. This model is suitable for the case in which both unsaturated phase and saturated phase are present and for beginning boiling and condensation process needn't initial interface. Both phases (liquid-va...

متن کامل

Newton-Product integration for a Two-phase Stefan problem with Kinetics

We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

متن کامل

UNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS

This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004